Vector algebra

In the sequel we consider only the three dimensional Euclidian vector spaces, denoted by V_3 .

Based on the usual notations in \mathbb{R}^3 , a point P_0 can be written in Cartesian coordinate form as $P_0 = (x_0, y_0, z_0)$.

We will denote by $\overrightarrow{OP_0}$ the oriented line sequence, the position vector of the point P_0 , and for which we introduce the similar coordinates $\overrightarrow{OP_0} = \langle x_0, y_0, z_0 \rangle$.

We will have for two different points $P_1 = (x_1, y_1, z_1)$, and $P_2 = (x_2, y_2, z_2)$ in \mathbb{R}^3 , the oriented line sequence will be denoted by $\overline{P_1P_2}$, and we will use the coordinate form

 $\overrightarrow{P_1P_2} = \langle x_2 - x_1, y_2 - y_1, z_2 - z_1 \rangle, \text{ as obviously } \overrightarrow{P_1P_2} = \overrightarrow{OP_2} \cdot \overrightarrow{OP_1} \text{ . The class of conguence } \left\{ \overrightarrow{P_1P_2} = \langle a, b, c \rangle \mid P_1, P_2 \in \mathbb{R}^3 \right\} \text{ is by definition the vector } \overrightarrow{v} = \langle a, b, c \rangle \in V_3. \text{ We mention 3 special vectors denoted } \overrightarrow{i} = \langle 1, 0, 0 \rangle, \ \overrightarrow{j} = \langle 0, 1, 0 \rangle, \ \overrightarrow{k} = \langle 0, 0, 1 \rangle, \text{ the unit vectors of the 3 coordinate axis, named coordinate vectors.}$

Basic vector operations

We have $\overrightarrow{v} = \langle a, b, c \rangle = a \overrightarrow{i} + b \overrightarrow{j} + c \overrightarrow{k}$. Vector multiplied by a scalar

Let us take the field $(\mathbb{R}, +, \cdot)$ and the Abelian group $(V_3, +)$. We define an external operation type $\mathbb{R} \times V_3 \longrightarrow V_3$, i.e. the operation of multiplying the vector $\overrightarrow{v} = \langle a, b, c \rangle \in V_3$ by the scalar λ , denoted by $\lambda \overrightarrow{v} = \langle \lambda a, \lambda b, \lambda c \rangle \in V_3$.

Properties

The vector $\lambda \vec{v}$ will be parallel with \vec{v} , except for $\lambda = 0$.

Example. For $\overrightarrow{v} = \langle 2, -1, 3 \rangle$ and $\lambda = 5$ will furnish the vector $5 \overrightarrow{v} = \langle 10, -5, 15 \rangle$

We will be able to check this using e.g their vector product, see below.

Further properties: $\lambda (\vec{v_1} + \vec{v_2}) = \lambda \vec{v_1} + \lambda \vec{v_2}$ $(\lambda_1 + \lambda_2) \vec{v} = \lambda_1 \vec{v} + \lambda_2 \vec{v}$ $\lambda_1 (\lambda_2 \vec{v}) = (\lambda_1 \lambda_2) \vec{v} \text{ and}$ $1 \cdot \vec{v} = \vec{v}, \text{ where } 1 \text{ is the unit in } \mathbb{R}.$ Scalar product of two vectors (dot product)

We define the external operation type $V_3 \times V_3 \longrightarrow \mathbb{R}$ in the following way: Given any two vectors $\overrightarrow{v_1} = \langle a_1, b_1, c_1 \rangle$, $\overrightarrow{v_2} = \langle a_2, b_2, c_2 \rangle \in V_3$, their scalar product, (named sometimes dot product) is: $\overrightarrow{v_1} \cdot \overrightarrow{v_2} = a_1a_2 + b_1b_2 + c_1c_2 \in \mathbb{R}$.

Properties

 $\overrightarrow{v_1} \cdot \overrightarrow{v_2} = \overrightarrow{v_2} \cdot \overrightarrow{v_1}$ commutativity

 $\overrightarrow{v_1} \cdot (\overrightarrow{v_2} + \overrightarrow{v_3}) = \overrightarrow{v_1} \cdot \overrightarrow{v_2} + \overrightarrow{v_1} \cdot \overrightarrow{v_3}$ linearity

 $\overrightarrow{v} \cdot \overrightarrow{v} \geq 0$, the last one is used to introduce $|\overrightarrow{v}| = \sqrt{\overrightarrow{v} \cdot \overrightarrow{v}}$, named the length of the vector \overrightarrow{v} (norm).

The unit vector
$$\vec{u^0}$$
 of the vector \vec{u} is $\vec{u^0} = \frac{\vec{u}}{|\vec{u}|}$, e.g. $\langle 3, 4, 12 \rangle^0 = \langle \frac{3}{13}, \frac{4}{13}, \frac{12}{13} \rangle$.

The scalar product of two vectors $\vec{v_1} \cdot \vec{v_2}$ has an other interpretation: $\vec{v_1} \cdot \vec{v_2} = |\vec{v_1}| |\vec{v_2}| \cos \varphi$, where φ denotes the angle of the two vectors. Applications

We deduce: $\cos \varphi = \frac{\overrightarrow{v_1} \cdot \overrightarrow{v_2}}{|\overrightarrow{v_1}||\overrightarrow{v_2}|}$, and we get an equavalent condition for the perpendicularity of two vectors, i.e. the nonzero vectors $\overrightarrow{v_1}$ and $\overrightarrow{v_2}$ are perpendicular iff $\overrightarrow{v_1} \cdot \overrightarrow{v_2} = 0.$ (iff stands here for if and only if).

Vector projection

In order to define the projection of a vector \vec{v} onto vector \vec{u} we need first to get the lenght of the projection. If we check the figure below, we observe that $\vec{v} \cdot \vec{u^0}$

is exacly what we need, i.e. $\overrightarrow{v} \cdot \overrightarrow{u^0} = |\overrightarrow{v}| \cos \varphi$. The projection we look for is: $pr_{\overrightarrow{u}} \overrightarrow{v} = \left(\overrightarrow{v} \cdot \overrightarrow{u^0}\right) \overrightarrow{u^0} = \frac{\left(\overrightarrow{v} \cdot \overrightarrow{u}\right) \overrightarrow{u}}{\left|\overrightarrow{u}\right|^2}$.

Vector product of two vectors (cross product)

We define the internal operation type $V_3 \times V_3 \longrightarrow V_3$ in the following way:

Given any two vectors $\overrightarrow{v_1} = \langle a_1, b_1, c_1 \rangle$, $\overrightarrow{v_2} = \langle a_2, b_2, c_2 \rangle \in V_3$, their vector product, (named sometimes cross product) is:

$$\overrightarrow{v_1} \times \overrightarrow{v_2} = \langle b_1 c_2 - b_2 c_1, a_2 c_1 - a_1 c_2, a_1 b_2 - a_2 b_1 \rangle \in V_3.$$

This definition can be easier memorised if taking the following formal definition (using a formal determinant):

$$\overrightarrow{v_1} \times \overrightarrow{v_2} = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \end{vmatrix}, \text{ where } \overrightarrow{i} = \langle 1, 0, 0 \rangle, \ \overrightarrow{j} = \langle 0, 1, 0 \rangle, \ \overrightarrow{k} = \langle 0, 0, 1 \rangle$$

are the coordinate vectors already mentioned.

Properties

 $\begin{array}{l} \overrightarrow{v_1} \times \overrightarrow{v_2} \perp \overrightarrow{v_1}, \overrightarrow{v_1} \times \overrightarrow{v_2} \perp \overrightarrow{v_2}, \\ \overrightarrow{v_1} \times \overrightarrow{v_2} = -\overrightarrow{v_2} \times \overrightarrow{v_1} \text{ anti-commutativity} \\ \overrightarrow{v_1} \times (\overrightarrow{v_2} + \overrightarrow{v_3}) = \overrightarrow{v_1} \times \overrightarrow{v_2} + \overrightarrow{v_1} \times \overrightarrow{v_3} \text{ and} \\ (\overrightarrow{v_1} + \overrightarrow{v_2}) \times \overrightarrow{v_3} = \overrightarrow{v_1} \times \overrightarrow{v_3} + \overrightarrow{v_2} \times \overrightarrow{v_3} \text{ linearity} \end{array}$

We can express the vector product of two vectors $\overrightarrow{v_1} = \langle a_1, b_1, c_1 \rangle$, $\overrightarrow{v_2} = \langle a_2, b_2, c_2 \rangle \in V_3$ as a vector perpendicular the same time on both vectors, and with the lenght: $|\overrightarrow{v_1} \times \overrightarrow{v_2}| = |\overrightarrow{v_1}| |\overrightarrow{v_2}| \sin \varphi$, oriented acording to the "right hand" rule, i.e. the vectors $\overrightarrow{v_1}$, $\overrightarrow{v_2}$ and $\overrightarrow{v_1} \times \overrightarrow{v_2}$ are in the similar position to the first 3 fingers on anybody's right hand.

Geometric application.

 $|\overrightarrow{v_1} \times \overrightarrow{v_2}| =$ the area of the parallelogramm spanned by the vectors $\overrightarrow{v_1}$ and $\overrightarrow{v_2}$.

Mixed product of three vectors

We define the external ternary operation type $V_3 \times V_3 \times V_3 \longrightarrow \mathbb{R}$ in the following way:

Given any three vectors $\overrightarrow{v_1} = \langle a_1, b_1, c_1 \rangle$, $\overrightarrow{v_2} = \langle a_2, b_2, c_2 \rangle$, $\overrightarrow{v_3} = \langle a_3, b_3, c_3 \rangle \in V_3$, their mixed product, (named sometimes triple product) is:

 $(\overrightarrow{v_1}, \overrightarrow{v_2}, \overrightarrow{v_3}) \longmapsto (\overrightarrow{v_1} \times \overrightarrow{v_2}) \cdot \overrightarrow{v_3}.$

For easier memorization, we can use the determinant: $\begin{bmatrix} a & b \\ b & c \end{bmatrix}$

 $|(\overrightarrow{v_1} \times \overrightarrow{v_2}) \cdot \overrightarrow{v_3}| =$ volume of the parallellipeped spanned by the three vectors, $\overrightarrow{v_1} = \langle a_1, b_1, c_1 \rangle$, $\overrightarrow{v_2} = \langle a_2, b_2, c_2 \rangle$, $\overrightarrow{v_3} = \langle a_3, b_3, c_3 \rangle \in V_3$. The sign of the mixed product expresses if the third vector is in the same "half-space" as the vector product of the first two, i.e. they form a right hand system $((\overrightarrow{v_1} \times \overrightarrow{v_2}) \cdot \overrightarrow{v_3} \ge 0)$ or not. The Serret-Frénét frame

Let us take the following vector-function (vector valued real function):

 $\overrightarrow{r}: \mathbb{R} \longrightarrow V_3$ given by $\overrightarrow{r}(t) = \langle x(t), y(t), z(t) \rangle$, where x(t), y(t), z(t) are the coordinate functions type $\mathbb{R} \longrightarrow \mathbb{R}$. This is the vector which is characterizing the moving point P(x(t), y(t), z(t)), given with the same coordinate functions in a parametric way. The point P will move along the parametric curve in the space.

It is known from mechanics that the velocity of the point is given by the $\vec{v} = \frac{\partial \vec{r}}{\partial t} = \langle \dot{x}(t), \dot{y}(t), \dot{z}(t) \rangle$, where $\dot{x}(t) = \frac{\partial x(t)}{\partial t}$, $\dot{y}(t) = \frac{\partial y(t)}{\partial t}$, and $\dot{z}(t) = \frac{\partial y(t)}{\partial t}$ $\frac{\partial z(t)}{\partial t}$, while its acceleration $\overrightarrow{a}' = \frac{\partial^2 \overrightarrow{r}}{(\partial t)^2} = \left\langle \ddot{x}(t), \ddot{y}(t), \ddot{z}(t) \right\rangle$, and similarly we have $\ddot{x}(t) = \frac{\partial^2 x(t)}{(\partial t)^2}$, $\ddot{y}(t) = \frac{\partial^2 y(t)}{(\partial t)^2}$, and $\ddot{z}(t) = \frac{\partial^2 z(t)}{(\partial t)^2}$. Example: For $\overrightarrow{r}(t) = \langle \cos t, \sin t, e^{-t} \rangle$, we have $\overrightarrow{v} = \langle -\sin t, \cos t, -e^{-t} \rangle$

and $\overrightarrow{a} = \langle -\cos t, -\sin t, e^{-t} \rangle$.

The Serret-Frénét formulas, which will give us the three vectors called the Serret-Frénét frame can be deduced in the following way:

 $\overline{t} = \frac{\overline{v}}{|\overline{v}|}$ (tangent vector), $\overrightarrow{b} = \frac{\overrightarrow{v} \times \overrightarrow{a}}{|\overrightarrow{v} \times \overrightarrow{a}|}$ (binormal vector), and $\overrightarrow{n} = \overrightarrow{b} \times \overrightarrow{t}$ (normal vector).

Example: For t = 0 in the previous curve, we have $\vec{v} = \langle 0, 1, -1 \rangle$, and $\overrightarrow{a} = \langle -1, 0, 1 \rangle$, and we compute $\overrightarrow{t} = \langle 0, \frac{1}{\sqrt{2}}, \frac{-1}{\sqrt{2}} \rangle$, $\overrightarrow{b} = \langle \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}} \rangle$ and $\overrightarrow{n} = \left\langle \frac{-2}{\sqrt{6}}, \frac{1}{\sqrt{6}}, \frac{1}{\sqrt{6}} \right\rangle.$

Let us introduce the real valued vector function (or 3 variable scalar function) type $F: V_3 \longrightarrow \mathbb{R}$, for which $F(\langle x, y, z \rangle) = F(x, y, z) \in \mathbb{R}$, and the vector valued vector function (shortly vector function) type $\overrightarrow{w}: V_3 \longrightarrow V_3$, for which $\overrightarrow{w}(\langle x, y, z \rangle) = \overrightarrow{w}(x, y, z) = \langle F_1(x, y, z), F_2(x, y, z), F_3(x, y, z) \rangle$, where $F_i(x, y, z)$ $(1 \le i \le 3)$ are of the first type.

We define three operations using a formal vectors, called the vector Nabla, Del operator or Nabla operator, denoted $\overrightarrow{\bigtriangledown} = \left\langle \frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z} \right\rangle$.

The gradient of a 3 variable scalar function $F : V_3 \longrightarrow \mathbb{R}$, for which $F(\langle x, y, z \rangle) = F(x, y, z) \in \mathbb{R}$, is the vector we obtain by mulpilying the vector $\overrightarrow{\bigtriangledown}$ by the scalar F. In other words $\overrightarrow{grad F} = F \cdot \overrightarrow{\bigtriangledown} = \left\langle \frac{\partial F}{\partial x}, \frac{\partial F}{\partial y}, \frac{\partial F}{\partial z} \right\rangle$.

The divergence of a vector function $\vec{w}: V_3 \longrightarrow V_3$, for which $\vec{w}(\langle x, y, z \rangle) =$ $\overrightarrow{w}(x,y,z) = \langle F_1(x,y,z), F_2(x,y,z), F_3(x,y,z) \rangle$ by the following "scalar prod-uct" $div \ \overrightarrow{w} = \overrightarrow{\nabla} \cdot \overrightarrow{w} = \frac{\partial F_1}{\partial x} + \frac{\partial F_2}{\partial y} + \frac{\partial F_3}{\partial z}.$

The curl (rotation) of a vector is $curl \ \overrightarrow{w} = \overrightarrow{\bigtriangledown} \times \overrightarrow{w} = \begin{bmatrix} i & j & k \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ F_{c} & F_{c} & F_{c} & F_{c} \end{bmatrix}$